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1. Introduction
When multiple decision makers are regard as one player, it is
probable that some of them approve, some object and the oth-
ers prefer to be neutral. Such a situation cannot be dealt with
existing games.

In this study, we define a bicooperative fuzzy game to deal
with such a situation. In a bicooperative fuzzy game, we define
solution concepts based on the Weber set[2] and the path so-
lution cover[1], and define the catcher. Furthermore, we shall
show relations among these solutions.
2. Preliminaries
Letn be a positive finite number, and a set of players is denoted
by N = {1, 2, ..., n}. A cooperative crisp game is defined by
an ordered pair(N, cr) wherecr : 2N → R with cr(∅) =
0. Let 3N = {(S, T ) : S, T ⊆ N,S ∩ T = ∅}. Then an
ordered pair(N, b) whereb : 3N → R with b(∅, ∅) = 0 is
called a bicooperative crisp game. Here, for(S, T ) ∈ 3N ,
b(S, T ) represents the proceed when the members ofS approve
a coalition, the members ofT object and the others are neutral.

A fuzzy coalition can be characterized by a vectors ∈
[0, 1]N . Then thei-th coordinatesi of s represents the par-
ticipation level of playeri in the cooperative fuzzy coalitions.
The set of all fuzzy coalitions are denoted byFN . ForS ⊆ N ,
the cooperative fuzzy coalitioneS ∈ FN is defined byeS

i = 1
if i ∈ S, andeS

i = 0 otherwise. A cooperative fuzzy game is
defined by(N, v) wherev : FN → R with v(e∅) = 0.
3. Bicooperative fuzzy games and solution con-
cepts
To introduce a bicooperative fuzzy game, let us define a bi-
cooperative fuzzy coalition by((si, ti))i∈N such thatsi, ti ∈
[0, 1] andsi + ti ≤ 1 for anyi ∈ N . In stead of((si, ti))i∈N ,
(si, ti)i∈N is also written.si andti represent the approval level
and the objection level of the playeri in (si, ti)i∈N , respec-
tively. We denote the set of all bicooperative fuzzy coalitions
by BFN . We define a bicooperative fuzzy game by(N, bv)
such thatbv : BFN → R with bv((e∅i , e

∅
i )i∈N ) = 0. Let us

denote the set of all bicooperative fuzzy games with player set
N by BFG(N). A set-valued solution onBFG(N) can be
defined byFBV : BFG(N) → 2RN

.
In this paper, we shall define two types each of the We-

ber set and of the path solution cover. To introduce two types
of the Weber set, let us define aW -path by a sequenceδ =
〈(sδ,0

i , tδ,0i )i∈N , . . . , (sδ,m
i , tδ,mi )i∈N 〉 of m+1 different points

in BFN satisfying the following;
A: (sδ,0

i , tδ,0i )i∈N = (e∅i , e
N
i )i∈N , and(sδ,m

i , tδ,mi )i∈N =
(eN

i , e∅i )i∈N ;
B: sδ,k

i ≤ sδ,k+1
i andtδ,ki ≥ tδ,k+1

i for any i ∈ N andk =
0, . . . ,m− 1;
C: {(sδ,k

i , tδ,ki )i∈N | k = 0, . . . ,m} ⊆ {(eS
i , eT

i )i∈N | (S, T )
∈ 3N}.
Then,∆(N) is defined by the set of allW -pathsδ in BFN .
We shall define two types of aW -path, which are denoted by
W1-path andW2-path. Both of these paths represent the pro-
cess that each player changes his choice from objection to ap-
proval. AW1-path is based on the idea that all players cannot
change their actions without passing neutral, while aW2-path

is based on the idea that all players can change directly from
objection to approval. AW1-path is defined by aW -path sat-
isfying
D-1: For eachk ∈ {0, . . . ,m − 1}, there is one playeri ∈ N

such thatsδ,k
i < sδ,k+1

i , tδ,ki = tδ,k+1
i or sδ,k

i = sδ,k+1
i , tδ,ki >

tδ,k+1
i while sδ,k

j = sδ,k+1
j , tδ,kj = tδ,k+1

j for j ∈ N\{i}.
Then,∆1(N) is defined by the set of allW1-pathsδ in BFN .
A W2-path is defined by aW -path satisfying
D-2: For eachk ∈ {0, . . . ,m − 1}, there is one playeri ∈ N

such thatsδ,k
i ≤ sδ,k+1

i , tδ,ki ≥ tδ,k+1
i and either one of the

two inequality holds in the strict sense, whilesδ,k
j = sδ,k+1

j ,

tδ,kj = tδ,k+1
j for j ∈ N\{i}.

Then,∆2(N) is defined by the set of allW2-pathsδ in BFN .
Let ∆i(δ) = {(sδ,k

i , tδ,ki ) | (sδ,k
i , tδ,ki ) 6= (sδ,k+1

i , tδ,k+1
i )}

for δ. We can define the playeri’s marginal contributionxδ
i (bv)

as xδ
i (bv) =

∑
k:(sδ,k

i ,tδ,k
i )∈∆i(δ)

(bv((sδ,k+1
i , tδ,k+1

i )i∈N ) −
bv((sδ,k

i , tδ,ki )i∈N )) for the W -pathδ. For ∆′(N) ⊆ ∆(N),
we define the Weber set on∆′(N) by a functionW : BFG(N)
→ 2RN

as the following.
W∆′(bv) = co{xδ(bv) ∈ Rn | δ ∈ ∆′(N)}.

To denote two types of the path solution cover, let us define
aQ-path by a sequenceδ satisfying A, B and the following;
C’: {(sδ,k

i , tδ,ki )i∈N | k = 0, . . . ,m} ⊆ BFN .
Then,Ψ(N) is defined by the set of allQ-pathsδ in BFN . We
shall define two types of aQ-path, denoted byQ1-path and
Q2-path. AQ1-path is based on the idea that all players are
not allowed to change their two action levels at the same time,
while aQ2-path is based on the idea that all players can change
their two action levels at one time. AQ1-path is defined by
a Q-path satisfying D-1, andΨ1(N) is defined by the set of
all Q1-pathsδ in BFN . A Q2-path is defined by aQ-path
satisfying D-2, andΨ2(N) is defined by the set of allQ2-paths
δ in BFN .

Let Ψi(δ) = {(sδ,k
i , tδ,ki ) | (sδ,k

i , tδ,ki ) 6= (sδ,k+1
i , tδ,k+1

i )}
for δ. Then we can define the playeri’s path solutionxδ

i (bv)
asxδ

i (bv) =
∑

k:(sδ,k
i ,tδ,k

i )∈Ψi(δ)
(bv((sδ,k+1

i , tδ,k+1
i )i∈N )−

bv((sδ,k
i , tδ,ki )i∈N )) for the Q-path δ. For Ψ′(N) ⊆ Ψ(N),

we define the path solution cover onΨ′(N) by a functionQ :
BFG(N) → 2RN

as the following.
QΨ′(bv) = co{xδ(bv) ∈ R | δ ∈ Ψ′(N)}.

Proposition 1: Let bv ∈ BFG(N). W∆1(bv) ⊆ QΨ1(bv)
andW∆2(bv) ⊆ QΨ2(bv).
4. Conclusion
In this study, we have defined a bicooperative fuzzy game as
a new game and solution concepts, the Weber set, the path so-
lution cover and the catcher. Then, We have shown relations
among them.
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